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The world is warming and humans are
responsible

“A strong, credible body of scientific evidence shows that climate
change is occurring, is caused largely by human activities, and poses
significant risks for a broad range of human and natural

systems. . ..

Some scientific conclusions or theories have been so thoroughly
examined and tested, and supported by so many independent
observations and results, that their likelihood of subsequently
being found to be wrong is vanishingly small. Such conclusions and
theories are then regarded as settled facts. This is the case for the
conclusions that the Earth system is warming and that much of this
warming is very likely due to human activities.”

US National Academy of Sciences. 2010. Advancing the Science of
Climate Change
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Big jump in CO, concentrations from
fossil fuels and land use changes

Carbon dioxide concentration (parts per million by volume)
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A closer look at the last 12,000 years

Carbon dioxide concentration (parts per million by volume)
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Global surface temperatures have
risen in the last century
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Increasing temperatures “load the
dice”
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What the data show
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Source: The New Climate Dice: Public Perception of
Climate Change. James Hansen, Makiko Sato, and
Reto Ruedy. August 2012.
http://www.giss.nasa.gov/research/briefs/
hansen_17/. Data are for Northern Hemisphere.

X-axes in graphs below are in standard deviations, not
C degrees.
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No-policy case carbon dioxide
concentrations to 2100

1000
EQOO 2100
3 Source: Sokolov et al.
> .
2800 2009 for projected
5 concentrations and ice
€ 700 core and directly measured
= data for historical numbers.
£ 600
=
c
2
% 500
£
g 40 2012
(%]
p- 1900
g o Ve ' o Papen® Yte T
2 200
©
(&)

100

-10,000 -8,000 -6,000 -4,000 -2,000 0 2,000
Year

Copyright Jonathan Koomey 2014 9



No-policy case greenhouse gas
concentrations to 2100 (all gases)
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Greenhouse gas concentrations

No-policy case greenhouse gas
concentrations to 2100
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Current trends = 5 C degrees by 2100,
with no end in sight
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Historical data from Marcott et al. (2013) and Jones et al. (2013),
with MIT projection taken from Sokolov et al. 2009. MIT climate
sensitivity is 2.9 degrees C, but warming by 2100 doesn’t reflect
the full warming impact because full equilibration takes centuries.
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Fossil fuel scarcity will not constrain
carbon emissions
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What can we do?

by Bill Watterson

Calvin and Hobbes
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Our options

* Adapt—-modify human systems to make
them more flexible and resilient

« Suffer—accept what comes (but what
comes is likely to be costly in lives,
ecosystem damage, and economic
disruption)

* Mitigate—reduce emissions



Questions about mitigation options

 How much carbon will they save?
 How much will they cost?

* Are they feasible
— technically? (science and technology)
— logistically”? (implementation and
policy)
— politically”? (social will and equity)
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Cost-benefit analysis: the standard

approach
Avoided incremental Incremental
damage costs abatement costs
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The forecasting quandary

 Economics # physics: we need to act, but it’s
impossible to calculate costs and benefits in
an accurate way

* Implication: the conventional model of full
benefit-cost analysis before acting is not
adequate to address this problem



An evolutionary, path-dependent view

 There is no “optimal path”, but there are many
possible alternative paths

— We can’t plan or know everything about the path
ahead but the warming limit defines the broad
outlines of success

e Our choices now affect our options later

* Needto
— invest in a broad portfolio of options
— fail fast

— modify plans dynamically
— learn as fast as we can



An alternative approach

Define a warming limit (e.g. 2 C degrees above
oreindustrial levels)

Determine the total greenhouse gases we can
then emit to stay under that limit

Define pathways that meet that constraint

Assess what we’d need to do achieve that
pathway (# of power plants, rate of improvement
in energy efficiency, etc)

Try options, fail fast, alter course as needed




There’s no time to waste
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Working toward the limit

* Like strategic planning, not forecasting

e e.g., to meet some fraction of the target

— how many emission-free power plants would we
have to build and how much capital would that
require?

— how fast would efficiency need to improve given
expected rates of economic growth?

— what institutional changes would be needed to
accelerate the rate of implementation?

* A way to organize our thinking about solutions

to the problem



Meeting constraints of the safer climate
case won’t be easy
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Lessons for entrepreneurs

Start with tasks, then redefine them
Focus on the whole system

Time is money

Modify property rights

Harness information technology

— Data collection

— Substitute bits for atoms and smarts for parts
— Transform institutions

Work forward toward goals to learn more rapidly



Peak computing efficiency
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Summary

Warming limit approach is similar to how businesses
make big strategic decisions

Focus is on risk reduction, experimentation, evaluation,
innovation and cost effectiveness, not on knowing
“optimal” path in advance (impossible!)

Science points to 2 deg C limit but ultimate choice is a

political judgment

— Declare value judgment up front (not buried in black box
models, as is customary)

Implies rapid reductions and keeping most fossil fuels in

the ground (requires rapid innovations in technologies
AND behavior/institutions)



Summary (continued)

* Immediate implementation is essential (can’t
just wait and see while doing R&D)
— Learning by doing only happens if we do!

* Existing low carbon resources are plentiful but
we’ll need new innovations in later decades to

keep reductions on track
e Start small. Think big. Get going!



“The best way to predict the future is to
invent it.” —Alan Kay
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Contributors to climate change
through 2005

Warming effect in 2005 (watts per square meter)
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Percent of US land area subject to 1
day precipitation extremes
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2 C degree warming limit

Keeps global T within humanity’s experience

Likely avoids the worst of the positive feedbacks
Implies cumulative GHG emissions “budget”

Limit itself now widely accepted (e.g., G8 in 2009), but
implications still not well known

— Global emissions must turn down this decade, down 50%
by 2050, more soon afterwards

— Waiting has a real cost

— We must act quickly on many fronts
* It’s Sputnik, not Apollo

— We can’t burn it all
e C Storage not practically relevant for decades, if ever



Most 2050 infrastructure built
between now and 2050

Industrial facilities -
Commercial buildings -
Residential buiaings [

Existing in 2012, still Built between 2012 and 2050
existing in 2050

Power plants -
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Forecasts often underestimate the
possibilities for change

 Economic models (with very few exceptions)

— assume current rigidities will continue forward in the
forecast (“The Big Mistake”, related to Ascher’s
“assumption drag”)

— assume structure of property rights is constant
— ignore increasing returns to scale
— rely on incomplete technology and policy portfolios
— ignore “no-regrets” options

e All but last issue true for top-down AND bottom-
up models



Delaying makes no sense in the
warming limit context

e When we act makes a difference

* Delaying action on climate
— eats up the budget

— makes required reductions more difficult and
costly later

— sacrifices learning and reduces possibilities for
future action

* Remember, energy techs don’t A fast



Impacts of Uncertainty, Learning, and Spillovers (IPcc ArR4, 2007)
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Figure 2.2. Emissions impacts of exploring the full spectrum of technological uncertainty in a given scenario without climate policies.
Relative frequency (percent) of 130,000 scenarios of full technological uncertainty regrouped into 520 sets of technology dynamics with
their corresponding carbon emissions (GtC) by 2100 obtained through numerical model simulations for a given scenario of intermediary
population, economic output, and energy demand growth. Also shown is a subset of 13,000 scenarios grouped into 53 sets of
technology dynamics that are all "optimal" in the sense of satisfying a cost minimization criterion in the objective function. The
corresponding distribution function is bi-modal, illustrating "technological lock-in" into low or high emissions futures respectively that
arise from technological interdependence and spillover effects. Baseline emissions are an important determinant for the feasibility and
costs of achieving particular climate targets that aregetgris paribyscheaner witimlower baseline emissions. Adapted from Gritsevskyi
and Nakicenovic, 2000.



Decanio concludes...

“The application of general equilibrium analysis to climate
policy has produced a kind of specious precision, a situation
in which the assumptions of the analysts masquerade as
results that are solidly grounded in theory and the data.
This leads to a tremendous amount of confusion and
mischief, not least of which is the notion that although the
physical science of the climate is plagued by uncertainties, it
is possible to know with a high degree of certainty just what
the economic consequences of alternative policy actions will
be.” (italics in original)



Fossil fuel resources are huge

TaBLE A-l: Lower bound estimates of energy and carbon content of fossil fuels worldwide
Energy content (Z) Carbon content (GtC)
Resource Resource
Reserves Resources  base Notes  Reserves Resources  base Notes
Conventional fuels
Natural gas 5 7 12 I 77 110 |87 5
Oill 5 4 9 I 98 83 181 5
Coal |7 291 308 I 446 7508 7954 5
Total conventional 27 302 330 621 7701 8322
Unconventional fuels
Coalbed methane 3 6 9 2 47 93 139 5
Shale gas 5 10 14 2 72 148 220 5
Deep gas 3 5 8 2 47 80 127 5
Tight gas 4 5 10 2 66 80 146 5
Oil sands I 4 5 3 29 78 106 5
Heavy oll 6 I 7 3 123 26 149 5
Shale oil I 2 3 3 22 43 66 5
Total unconventional 24 34 57 405 548 953
Exotic
Methane hydrates 65 4 1000 6
Total, conv. + unconv. 51 336 387 1026 8249 9275

Note: Current annual
global primary energy
useis0.67)(172)=
1000 EJ or 10e21 )J),
which is about 30 TW.

Source: Table A-1 from Cold-Castiy: Cool-Climate;riainly using GEA data 2012 41



